Realisation

Albert Gatt
Institute of Linguistics, University of Malta

http://staff.um.edu.mt/albert.gatt/
albert.gatt@um.edu.mt

The “consensus” architecture

Communicative goal

l

Document Planner

l

document plan

Microplanner

l

text specification

Surface Realiser

ex

By way of a characterisation

* |nput:
— A “sentence plan”
— Unordered.
— Uninflected.

e Task:

— Map this to a syntactic structure
— Apply morphological rules
— Render as a string

Realisation = parsing in reverse?

* Parser:
— A transducer from strings to structures.
— Parsers model hypotheses.

e Realiser

— A transducer from deep structures (semantic-
syntactic) to strings.

— Realisers model choices.
(e.g. Rajkumar & White 2014)

1.

3.

4.

5.

Preview

Overview of the realisation process
— Choices involved

Types of realisers.

Statistical realisation in more detail
— Overgeneration and ranking
— The basic chart generation algorithm
— Ranking via corpus data

Realisation engines: the case of SimpleNLG

Evaluating realisers

Part 1

CHOICES IN REALISATION

Input - Output

[Event
TYPE declarative
PRED kick
TENSE past
PRED woman
AGENT
GEN QUANT 3 }
ARGS
PATIENT PRED man s
DEF true S
N
NP A~
I: v
A~ PN Py
DET N v
N N ~
A~
DET
N
. wome P .
three N kicked the
N— — N—

\

Input — Output (Take 2)

($)

[Event
TYPE declarative
VERB kick
TENSE past
NOUN woman
SUBJECT DET 3
NUM pl
ARGS
NOUN man
OBJECT DET the
NUM sg
' S
NP
A~ = A~
DET N v
o Wom kicke —
three en &

H2)

>_

DET

—~+
¢

z)

How specific is the input?

[Event
TYPE declarative
VERB kick
TENSE past
SUBJECT
ARGS
OBJECT

NOUN woman
DET 3
NUM pl
NOUN man
DET the
NUM sg

* |nput differs wrt:
— Specification of argument roles (functional, semantic).
— Specification of function words (e.g. DET)
— Specification of morphological features (e.g. NUM)

e —

[Event

TYPE declarative
PRED kick
TENSE past
AGENT
ARGS
PATIENT

PRED woman
QUANT 3
PRED man
DEF true

Constituency-based representation

Syntax is hierarchical
and recursive. ~

Trees are a common
representation

- Head of NP Head of VP Dependent of V
D I REL: object
\.|,/

VP

A~ A~

DET N

N N
o

Also, feature structures ~ J

(graphs).

women klcked the

\) _J
|
Inflectional morphology: Inflectional morphology:
Noun + number (plural) Verb + tense (past)
Dependent of N \ ’
REL: determiner/ \

specifier
Morphosyntactic agreement:
Subject and verb agree for number.

Dependency-based representation

Example French sentence (from the Universal
Dependency Treebank; McDonald et al 2013):

-~

ADPMOD
ADPOBJ
. - i
NSUBJ A= \1()1) ADPOBJ

/ \ |2 rl’)(lsi\\v'r

Alexandre réside I\GL sa famille i—l quueux
NOUN VERB ADP DET NOUN ADP NOUN P

11

Knowledge sources

* Lexical knowledge:
— NB: Not all systems have a separate lexicon!
— Words + morphological rules
— Crucially: exceptions to the rules
— English:

* be 2 was, were Many verbs in English do not change
in the plural. This is the exception, not

e eat =2 ate, ate the rule.

Knowledge sources

* Syntactic knowledge:

— Knowledge of the right constituent order.
* English:
— S > NPy VP

— Three women kicked the man

— But several options become possible if, e.g.,
pragmatic factors come into play:
|t was three women who kicked the man. (it-cleft)
e The man was kicked by three women. (passive)

Not all rules are easy to state

* Modifier ordering in English (cf. Maalouf 2002;
Mitchell 2009):

— the large green ball

— ?the green large ball

 Example from Penn Treebank (after Callaway
2005):

— a 5100 million Oregon general obligation
veterans’ tax note issue.

Not all rules are easy to state

e Adverbial modifiers apparently can be placed
anywhere:

— For now, I’'ll wait and see.

— I’ll wait and see for now.
— I’ll wait for now and see.

e But (ex cited by Rajkumar & White 2014):

— Separately, the Federal Energy Regulatory Commission
turned down for now a request by Northeast seeking
approval of its possible purchase of PS of New Hampshire.
(WSJ0013.16).

— Separately, the Federal Energy Regulatory Commission
turned down a request by Northeast seeking approval of
its possible purchase of PS of New Hampshire for now.
(WSJ0013.16).

Not all rules are easy to state

* When should “that” be used? Is it always
optional?
— He said he’d go.
— He said that he’d go.

* But consider (cf Rajkumar & White 2014):

— He [said that [for the second month in a row, food
processors reported a shortage of non- fat dry milk]].
(WSJ0036.61)

— He [[said for the second month in a row], food
processors reported a shortage of nonfat dry milk].

The problem of (unintended)
ambiguity
* A choice can determine whether the output is

ambiguous or not.
— We saw this in the case of “that”.

 Modifier and determiner repetition:
— He shot the young lions and horses.
— He shot the young lions and the horses.
— He escorted the old men and horses.
— (Cf. Khan et al 2012, for experimental work)

By way of a revised characterisation

* |nput:
— A “sentence plan”
— Unordered.
— Uninflected.

— Possibly including pragmatic and other info.
* But this depends on the input specification.

e Task:

— Map this to a syntactic structure which communicates the info
and conveys the pragmatic intentions.
* |deally, avoid ambiguity in the process.
 |deally, respect linearisation rules.

— Apply morphological rules
— Render as a string

Part 2

A TYPOLOGY OF REALISERS

Grammar-based realisers

* Include explicit grammatical rules.

— Rules are hand-written or extracted automatically
from parsed corpora (treebanks).

— Represent linguistic choices as choices between
rules (also locally).

— Often, choose among alternatives on a “global”
level: which is the best sentence to realise a given
input?

— Typically use a chart parsing algorithm (on which,
more later).

Grammar-based realisers

1. Symbolic

May entertain multiple hypotheses.

Output represents the “best” choice based on
the rule-base and the algorithm.

2. Overgenerate-and-rank

Generate multiple outputs.

Rank these outputs using a statistical model.

“Best choice” = the one ranked highest by the
model, given its features.

Rules for Grammar-Based Realisers

* Rules may come from:

1.
2.

Hard labour (i.e. hand-coding)
Extraction from parsed corpora (treebanks)

* E.g. Hockenmaier & Steedman (2007): conversion of
the Penn Treebank into structures based on
Combinatory Categorial Grammar.

— Used with the OpenCCG Realiser.

e E.g. Callaway (2003): conversion of the Penn Treebank
into inputs for FUF/SURGE.

Extracting input from treebank

* Penn treebank input (Callaway 2003):

{2 (PP (IM Without)
(NP (MNP GM)))
(. .]
\NP-SBJ
(NP (JJ owvaerall) (HNS =salaes))
(PP (IN for)
(NP (DT the) (JJ other)
(MNP TU.S.) (NNS automakers)))]
(VP (VBD waere)
(ADJTP-PRD (RB roughly) (JJ £lat)
(PP (IN with)
(NP (CD 1989) ([(HNNMES results ")13113)

Extracting input from treebank

* Conversion into feature structure for FUF/SURGE (Callaway, 2003)
 Note: this input is unordered.

{ {cat clause)
(circum ((accompaniment ((cat pp) (position front] (accomp-polarity -)
(np ((cat proper) (lex "GM"))}})))
(process ((type ascriptive) (tense past)))
(participants (({carrier ((cat common) (lex "sale") (number plural)
(describer ((cat adj) (lex "overall®)))))
(qualifier ({cat pp) (prep ((lex "for")})
(np ((cat common) (lex "automaker®) (definite yes)
(number plural) (status different)
(clagsifier ((cat proper) (lex "U.5."))))}})))
{attribute ({cat ap) (lex "flat") (modifier ({cat adv) (lex "roughly")))
h (qualifier ((cat pp) (prep {(lex "with"))]
(np ((cat common) (lex "result") (number plural)
(classifier ((cat date) (year 1983))))1}))))))

NB: Aim here is to use the input from the Penn Treebank to regenerate the original
sentence.

NOT to induce a grammar for FUF/SURGE (which is hand-coded).

Compare to input for OpenCCG

He has a point o s[dcl\np/np
he Wants to <TENSE>pres @

m ak e. <Arg0/ <Argx

(Rajkumar & he pomt

<NUM>sg SArgl>

White 2013) — -
) \ s[dcl]\np/(s[to]\

want.01
<TEN SE>pres

np/n <Afgo>/ \‘\rgb
st @ @make.%
s[b]\np/np
This input is also derived from the Penn Treebank.

Rules for OpenCCG can also be induced from the treebank.

Grammar-based, hand-crafted

 Grammar-based, using hand-crafted rules:
— FUF/SURGE (Elhadad & Robin, 1996)

* Based on Functional Unification Grammar.
* Models choices using unification of feature structures.
 Among the best coverage and BLEU score (Callaway, 2005).

— KPML (Bateman, 1997)
e Based on Systemic-Functional Grammar.
* Models choices as paths through a graph (systemic
network).

» Systemic networks include a combination of grammatical
and pragmatically-motivated choice points.

Grammar-based + reranking

* HALOGEN (Langkilde 2000, 2002)

— Earliest example of ranking model for NLG.

— Grammar is relatively “theory-neutral”, relatively few
rules.

— Ranking based on n-gram models.

* OpenCCG (White et al 2007)

— Based on Combinatory Categorial Grammar

— Grammar induced from the Penn Treebank
(Hockenmaier & Steedman 2007).

— Ranking (in current version) based on a variety of
features, not just n-grams.

Classification-based approaches

* Use multiple classifiers (chained) to make
decisions at a local level.

* Example: Fillipova & Strube (2009):

— Input: Constituents (subject, object, adverb...)

1.
2.
3.

Use a classifier to identify the first constituent.
Use a second classifier to sort the remainder.

Insert verb after the subject (wherever it
happens to be).

Things to note

* How detailed the input is...

 What the input includes (semantics, morpho-
syntax, pragmatic info)...

e ...all depends on your theory of grammar.

Part 3

AN OVERVIEW OF THE BASIC
ALGORITHM

Many ways to say the same thing

 Example input: ORDER(eat(you,chicken))
— Eat chicken!
=1t is required that you eat chicken!
=1t is required that you eat poulet!
—Poulet should be eaten by you.
—2You should eat chicken/chickens.
— Chicken/Chickens should be eaten by you.

* Of course, this is assuming we have a non-
trivial grammar that supports multiple
choices.

Chart Generation

* Historically, chart algorithms were developed
for parsing.
— Proposed as solutions for realisation by Shieber
(1988) and Kay (1996).

— Exposition here follows Kay (1996).

The basic idea

* The algorithm schema requires two main
components:

— Agenda: holds bits of input, in some order
— Chart: holds (partial) outputs
— Algorithm:

 Removes items from the Agenda and puts them on the
Chart

* Merges items on the chart
* Places new items back on the Agenda
— Major pro:

* Allows us to entertain multiple realisation hypotheses while
minimising extra work.

Example (Kay 1996)

A very simple input semantics (very flat!):

* r:run(r), past(r), fast(r), argl(r,j), name(j, John)

 “There’s a run event whose agent is John and the

event was fast.”
 Our ‘r and ‘j’ are constants.

A very simple lexicon:

Word | Category ___| Semantics ___

John

ran

fast
quickly

np(x)
vp(x,y)

adv(x)
adv(x)

X: name(x, John)
x: run(x), argl (x,
y), past(x)

x: fast(x)

x: fast(x)

Example (Kay 1996)

A very simple set of grammar rules:

* s(x) =2 nply), vp(x,y)
e vp(x) =2 vp(x) adv(x)

s(x) = np(y), vp(x,y)
vp(x) = vp(x) adv(x)

r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA CHART

Word | Category | Semantics | Word | Category | Semantics
John np(x) X: name(x, -

John)
ran vp(x,y) X: run(x),

argl (x, y),

past(x)
fast adv(x) x: fast(x)

quickly adv(x) x: fast(x)

s(x) = np(y), vp(x,y)
vp(x) = vp(x) adv(x)

r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA CHART
| Word | Category | Semantics Word | Category | Semantics
ran vp(x,y) X: run(x), John np(x) X: name(x,
argl (XI y)l - JOhn)
past(x)
fast adv(x) x: fast(x)

quickly adv(x) x: fast(x)

r: run(r), past(r), fast(r),

argl(r,j), name(j, John)

| Word ___| Category _| Semantics__

AGENDA
fast adv(x)
quickly adv(x)

x: fast(x)

x: fast(x)

s(x) = np(y), vp(x,y)
vp(x) =2 vp(x) adv(x)

CHART
Word | Category | Semantics
John np(x) X: name(x,
John)
ran vp(x,y) X: run(x),
argl (x, y),
past(x)

Can merge these on the basis
of the s(x) rule.

John ran

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) = vp(x) adv(x)
AGENDA CHART
Word | Category | Semantics Word | Category | Semantics
fast adv(x) x: fast(x) # John np(x) X: name(x,
quickly adv(x) x: fast(x) John)
Johnran S(r) r:run(r), fElL vp(x,y) x: run(x),
past(r), argl (x, y),
argl(r,j), past(x)
name(j,
john)

Not done yet! Haven't
covered all of input
semantics.

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) 2 vp(x) adv(x)
AGENDA CHART
|Word | Category | Semantics |Word | Category | Semantics
quickly adv(x) x: fast(x) John np(x) X: name(x,
] _ John)
ohn ran S(r) r:run(r),
past(r), ran vp(x,y) X: run(x),
argl(rj), argl (x, y),
name(j, past(x)
john) fast adv(x) x: fast(x)

Can merge on the basis of the
vp(x) rule.
ran fast

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) =2 vp(x) adv(x)
AGENDA CHART
| Word | Category | Semantics |Word | Category | Semantics
quickly adv(x) x: fast(x) # John np(x) X: name(x,
Johnran S(r) r:run(r), John)
past(r), ran vp(x,y) X: run(x),
argl(rj), argl (x, y),
name(j, past(x)
john) fast adv(x) x: fast(x)
ran fast vp(x) r: run(r),
past(r),
fast(r),

argl(r,j)

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) = vp(x) adv(x)
AGENDA CHART
Word | Category | Semantics | | Word | Category | Semantics |
John ran S(r) r:run(r), John np(x) X: name(x,
past(r), John)
argl(r,.j), ran vp(x,y) x: run(x),
name(j, argl (x, y),
john) past(x)
ran fast vp(x) r: run(r), fast adv(x) x: fast(x)
past(r), .
fast(r). quickly adv(x) x: fast(x)

argl(r,j)

Can merge on the basis of the
vp(x) rule.
ran quickly

r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA
| Word ___| Category _| Semantics__

John ran S(r) r:run(r),
past(r),
arg1(r,j),
name(j,
john)

ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)

ran quickly Vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)

s(x) = np(y), vp(x,y)
vp(x) =2 vp(x) adv(x)

CHART
Word | Category | Semantics

John np(x) X: name(x,
John)

ran vp(x,y) X: run(x),
argl (x, y),
past(x)

fast adv(x) x: fast(x)

quickly adv(x) x: fast(x)

r: run(r), past(r), fast(r),

argl(r,j), name(j, John)

AGENDA

s(x) = np(y), vp(x,y)
vp(x) 2 vp(x) adv(x)

CHART

| Word ___| Category _| Semantics__ Word __| Category _| Semantics__

ran fast vp(x)

ran quickly Vp(x)

r: run(r),
past(r),
fast(r),
argl(r,j)
r: run(r),
past(r),
fast(r),
argl(r,Jj)

John

ran

fast

quickly

John ran

np(x)

vp(x,y)

adv(x)

adv(x)
S(r)

X: name(x,
John)

X: run(x),
argl (x, y),
past(x)

x: fast(x)
x: fast(x)
r:run(r),
past(r),

arg1(r,j),
name(j,
john)

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

X: name(x,
John)

X: run(x),
argl (x, y),
past(x)

x: fast(x)
x: fast(x)

r:run(r),
past(r),
arg1(r,j),
name(j,
john)

argl(r,j), name(j, John) vp(x) = vp(x) adv(x)
AGENDA CHART
| Word | Category | Semantics Word | Category | Semantics
ran quickly Vp(x) r: run(r), John np(x)
past(r),
fast(r), ran vp(x,y)
argl(r,j)
fast adv(x)
quickly adv(x)
John ran S(r)
Can merge these on the basis
ran fast vp(x)

of the s(x) rule.
John ran fast

r: run(r),
past(r),
fast(r),
argl(r,j)

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) 2 vp(x) adv(x)
AGENDA CHART
Word | Category | Semantics | | Word | Category | Semantics |
ran quickly Vp(x) r: run(r), John np(x) x: name(x,
past(r), - John)
fast(r), ran vp(X,y) x: run(x),
argl(r,j) argl (x, y),
past(x)
John ran S(x) Complete!
fast fast adv(x) x: fast(x)
quickly adv(x) x: fast(x)
John ran S(r) r:run(r),
past(r),
argl(r,j),
name(j,
john)
ran fast vp(x) r: run(r),
past(r),
fast(r),

argl(r,j)

r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)
argl(r,j), name(j, John) vp(x) = vp(x) adv(x)

AGENDA CHART
Word | Category | semantics __ Word | Category | Semantics _

Johnran S(x) Complete! John ran S(r) r:run(r),

fast past(r),
argl(r,j),
name(j,
john)

ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)
ran quickly Vp(x) r: run(r),
past(r),
Can merge these on the basis fast(r),
of the s(x) rule. argl(r.))

John ran quickly

r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA
Word | Category | Semantics
John ran S(r) Complete!
fast

John ran S(r) Complete
quickly

Done! Have covered all the
input semantics.

NB: Two realisations
produced.

s(x) = np(y), vp(x,y)
vp(x) 2 vp(x) adv(x)

CHART

Word __| Category _| Semantics__

John ran S(r) r:run(r),
past(r),

argl(r,j),
name(j,
john)
ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(rj)
ran quickly Vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)

Some things to notice

* We implicitly restricted the process so that
the application of a rule can only cover a given

part of the input once.

° AVOIdS thlngs |Ike John ran S(r) r:run(r),

. ast(r),
— ran fast quickly srg1((rfj),
name(j,
john)
ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)
ran quickly vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)

Some further details

* |n this rough outline:

— Every time we put an edge on the chart, we
consider whether it can somehow interact with
any other edge of the chart.

e Solution:

— Only consider interactions where edges have
“open positions” in which the current edge can be
slotted in.

* The notion of “active” edges.

Some further details

* Consider:
NP> DETAPN
* AP 2 Adj*
e The tall, dark, handsome man

e Multiple applications of the NP modification rule. Several
orderings possible.

* Each ordering could end up being merged with the NP!
* Exponentiall!

e Solution:

— Keep track of which entities in the input have been
covered by the edges on the chart.

— Only construct maximal edges when merging:
 Don’t build the tall dark man if that leaves out handsome.

Part 4

OVERGENERATION AND RANKING

Nitrogen and HALogen

Pioneering realisation systems with wide coverage (i.e.
handle many phenomena of English grammar)

Based on overgeneration/ranking

HALogen (Langkilde-Geary 2002) is a successor to
Nitrogen (Langkilde & Knight 1998)

— main differences:

* representation data structure for possible realisation
alternatives

* HALogen handles more grammatical features

Structure of HALogen

Symbolic Generator

eRules to map input

representation to syntactic

structures multiple outputs

represented in a “forest”

el exicon

eMorphology

Statistical ranker
best sentence en-gram model (from Penn

Treebank)

HALogen Input

Grammatical specification
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))

Semantic specification
(el/ eat
:agent (d1 / dog)
:patient (b1 / bone
:premod(m1 / meaty))
:temp-loc(tl / today))

Labeled feature-value
representation specifying
properties and relations of
domain objects (el, d1, etc)

Recursively structured
Order-independent

Can be either grammatical or
semantic (or mixture of both)

— recasting mechanism maps from
one to another

HALogen base generator

e Consists of about 255 hand-written rules

* Rules map an input representation into a packed set of

possible output expressions.
— Each part of the input is recursively processed by the rules,
until only a string is left.

e Types of rules:

1. recasting
2. ordering

3. filling

4. morphing

Recasting

* Map semantic input representation to one
that is closer to surface syntax.

Semantic specification IF relation = :agent
(el/ eat AND sentence is not passive
:patient (b1 / bone THEN map relation to :subject

:premod(m1 / meaty))

:temp-loc(tl / today) - ——
:agent (d1 / dog)) Grammatical specification

(el/ eat
\’ :object (b1 / bone

:premod(m1 / meaty))
:adjunct(t1 / today)
:subject (d1 / dog))

Ordering

Assign a linear order to the values in the input.

Grammatical specification
(el / eat
:object (b1 /b
object (b1 / bone Put subject first unless sentence is
:premod(m1 / meaty)) passive.
:adjunct(tl / today) Put adjuncts sentence-finally.
:subject (d1 / dog))

Grammatical specification + order
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))

Filling

* Ifinputis under-specified for some features, add all the possible
values for them.

— NB: this allows for different degrees of specification, from minimally
to maximally specified input.

— Can create multiple “copies” of same input

Grammatical specification + order +:TENSE (past)
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(t1 / today)) +:TENSE (present)

Morphing

* Given the properties of parts of the input, add
the correct inflectional features.

Grammatical specification + order
(el / eat
:tense(past)
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty)) - ——
. Grammatical specification + order
:adjunct(tl / today))
(el / ate
~—— :subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))

The output of the base generator

* Problem:

— a single input may have literally hundreds of
possible realisations after base generation

— these need to be represented in an efficient way
to facilitate search for the best output

* Options:
— word lattice
— forest of trees

Option 1: lattice structure (Langkilde-Geary

2000)

, .
=
1
2 ’? !
1 x

E
H

“You may have to eat chicken”: 576 possibilities!

4
(N

Properties of lattices

In a lattice, a complete left-right path represents a
possible sentence.

Lots of duplication!

— e.g. the same word “chicken” occurs multiple times
— ranker will be scoring the same substring more than once

In a lattice path, every word is dependent on all other
words.

— can’t model local dependencies

Option 2: Forests (Langkilde-Geary ‘00,’02)

S
OR
S.328 S 358
A /\
PRP.3 VP.327 NP.318 VP.357
you VP.248 NP.318 2
OR

m to be eaten by

the chicken

Properties of forests

* Efficient representation:

— each individual constituent represented only once, with
pointers

— ranker will only compute a partial score for a subtree once
— several alternatives represented by disjunctive (“OR”) nodes

* Equivalent to a non-recursive context-free grammar
— S.469 - S.328
— S.469 - S.358

Statistical ranking

* Uses n-gram language models to choose the best
realisation r:

n
Phest = argmaxreforest | ‘P(WZ |W1"'Wi—1)
i=1

n
ArgMax . g, g H P(w; | w;_) [Markov assumption|
i=1

Performance of HALogen

Minimally specified input frame (bigram model):

* |t would sell its fleet age of Boeing Co. 707s because of
maintenance costs increase the company announced earlier.

Minimally specified input frame (trigram model):

 The company earlier announced it would sell its fleet age of
Boeing Co. 707s because of the increase maintenance costs.

Almost fully specified input frame:

* Earlier the company announced it would sell its aging fleet of
Boeing Co. 707s because of increased maintenance costs.

Observations

* The usual issues with n-gram models apply:

— bigger n > better output, but more data
sparseness

* Domain dependent

— relatively easy to train, assuming corpus in the
right format

Bevond n-grams?

* N-gram models rank purely based on word
sequences.

* Recent work has begun to consider factoring
in other features during re-ranking.
— This takes us beyond simple language models.
— Consider factored language models, for example.

Example: Distance-based features

e Recall:

— Separately, the Federal Energy Regulatory Commission
turned down for now a request by Northeast seeking
approval of its possible purchase of PS of New
Hampshire. (WSJ0013.16).

— Separately, the Federal Energy Regulatory Commission
turned down a request by Northeast seeking approval
of its possible purchase of PS of New Hampshire for
now. (WSJ0013.16).

e Distance-based features can cause a ranker to
orefer outputs where the modifier is closer to the
nost.

Example: Agreement features

* |f inputis underspecified w.r.t. inflection, we
would like to enable our ranker to prefer
sentences where subject-verb agreement is
correct.

— E.g. agreement based on animacy and number.

— Can be compromised by distance (e.g. with a WH-
clause between subject NP and Verb).

— N-gram models can miss this.

* The car, which was bought by the manager, was/were
damaged.
* The people who/which/that bought cigarettes...

But wait..

* Why not put these directly in the grammar?

— Grammar is then guaranteed to only overgenerate
with correct alternatives.

— Ranking can proceed as normal.

 The main problems:

— Not all rules are easy to specify (cf. modifier
ordering);

— Some rules have a lot of exceptions, sub-
regularities etc.

Part 6

REALISATION ENGINES

A realisation engine

* Unlike a realiser, a realisation engine is simply
a software library which:

— Performs linearisation

— Performs morphological inflection
— i.e. generates correct syntactic structures

BUT:

— Leaves the choices up to the user/engineer.

SimpleNLG

SimpleNLG (Gatt & Reiter 2009):

— Developed at Aberdeen
— Java API to generate English sentences

— Versions now exist for French (Vaudry & Lapalme 2013),
German (Bollman 2011), Brazilian Portugese (de Oliveira &
Sripada 2014).

Features:
— No input specification.
— No choice-making behaviour, except for basic linearisation and
inflection decisions.
— Allows mixture of canned text and syntax.
— Theory-neutral (except for definition of phrase and word types).

— Reasonable coverage (but not formally evaluated).

SimpleNLG Example

» Target sentence: Once upon a time there was a cat.

SPhraseSpec s = this.phraseFactory.createClause();
s.setSubject("there");

VPPhraseSpec vp = this.phraseFactory.createVerbPhrase("be");
NPPhraseSpec np = this.phraseFactory.createNounPhrase("a", "cat");
vp.setComplement(np);

s.setVerbPhrase(vp);

s.setFeature(Feature.TENSE, Tense.PAST);

StringElement string = new StringElement(“Once upon a time”);
s.setFrontModifier(string);

Why bother?

e Often, developers of NLG systems are interested in
other parts of the NLG process.

— |.e. don’t want to bother with a sophisticated realisation
component.

* Full control
— The fact that it’s theory-neutral helps.

* Simplicity
— Used by quite a large community, accessible to non-
linguists.
— Used also by individuals interested in using an NL front-
end, but not really doing “full-fledged” NLG.

Part 6

EVALUATING REALISERS

The typical evaluation setup

Corpus with Extract inputs

annotations ‘ from corpus

Regenerate the
sentences.

Comparison using some
evaluation metric.

Evaluation metrics

* Coverage:

— How much of the corpus does the realiser manage
to re-generate?

 What proportion does it regenerate exactly?
 What proportion does it have no output for?

e String overlap:
— Simple String Accuracy
— BLEU

— Both of these give average scores over the test
set.

Looking under the hood

* Simple string-based averages don’t tell us what it is
exactly that is going wrong.

e Callaway (2005):

— Exhaustive analysis of errors made by FUF/SURGE against
the Penn Treebank.

— Very high coverage, highest BLEU score recorded to date.

— Errors arise from a variety of sources:
* Errorsin the corpus annotation.
* Errors during transformation (extraction of inputs from corpus)
* Errors of syntax (problems with rules)

Current Frontiers in Realisation

* Improving realisers by taking into account
more linguistic features.

— Re-ranking, or grammar engineering?
* Multilinguality:

— Most realisation work done on English. Other
languages have very different (sometimes more
complex challenges).

— Problem: corpora from which to induce
grammars, train re-rankers.

Some final observations

* Traditionally, realisation is viewed as the final
stage of NLG.

 However, lexicalisation, aggregation etc are
often thought of as sub-tasks of realisation.

e As statistical models get more sophisticated,
we see realisation also working with:
— Lexical features

— Pragmatic features
— Information structure

References

Bateman, J. A. (1997). Enabling technology for multilingual natural language generation: the
KPML development environment. Natural Language Engineering, 3(1), 15-55. doi:10.1017/
S$1351324997001514

Callaway, C. (2003). Evaluating coverage for large symbolic NLG grammars. In Proceedings of
the 18th international joint conference on Artificial intelligence (IJCAI'03) (pp. 811-816).
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.169.7097&rep=repl&type=pdf

Callaway, C. B. (2005). The Types and Distributions of Errors in a Wide Coverage Surface
Realizer Evaluation. In Proceedings of the 10th European Workshop on Natural Language
Generation (ENLG’05) (pp. 162—167). Aberdeen, UK: Association for Computational
Linguistics.

Elhadad, M., & Robin, J. (1996). An overview of SURGE: A reusable comprehensive syntactic
realization component. In Procedings of the 8th International Natural Language Generation
Workshop (IWNLG’98) (pp. 1-4). Sussex, UK: Association for Computational Linguistics.
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.43.5187&rep=repl&type=pdf

Filippova, K., & Strube, M. (2009). Tree linearization in English: Improving language model
based approaches. Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Linguistics
((Ij\IAACL-HLT’O9), 33(June), 225-228. Retrieved from http://portal.acm.org/citation.cfm?
id=1620915

References

Gatt, A., & Reiter, E. (2009). SimpleNLG: A realisation engine for practical applications. In Proceedings of the 12th
European Workshop on Natural Language Generation (ENLG’09) (pp. 90-93). Athens, Greece: Association for
Computational Linguistics.

Hockenmaier, J., & Steedman, M. (2007). CCGbank: A Corpus of CCG Derivations and Dependency Structures
Extracted from the Penn Treebank. Computational Linguistics, 33(3), 355-396. doi:10.1162/c0li.2007.33.3.355

Kay, M. (1996). Chart Generation. In Proceedings of the 34th annual meeting of the Association for Computational
Linguistics (ACL'96) (pp. 200—204). Santa Cruz, CA: Association for Computational Linguistics.

Khan, I. H., Deemter, K. Van, & Ritchie, G. (2012). Managing Ambiguity in Reference Generation: The Role of
Surface Structure. Topics in Cognitive Science, 4(2), 211-231. do0i:10.1111/j.1756-8765.2011.01167.x

Langkilde, I. (2000). Forest-based statistical sentence generation. In Proceedings of the 6th Applied Natural
Language Processing Conference and the 1st Meeting of the North American Chapter of the Association of
Computational Linguistics (ANLP-NAACL’00) (pp. 170-177). Seattle, WA: Association for Computational Linguistics.
Langkilde, I., & Knight, K. (1998). Generation that exploits corpus-based statistical knowledge. In Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on
Computational Linguistics (ACL/COLING’98) (pp. 704—710). doi:10.3115/980845.980963

Langkilde-Geary, ., & Knight, K. (2002). HALogen Statistical Sentence Generator. In Proceedings of the ACl 2002
Demnonstrations Session (pp. 102—103). Philadelphia, PA: Association for Computational Linguistics.

Malouf, R. (2000). The order of prenominal adjectives in natural language generation. In Proceedings of the 38th
Annual Meeting on Association for Computational Linguistics (ACL'00) (pp. 85—92). Morristown, NJ, USA:
Association for Computational Linguistics. doi:10.3115/1075218.1075230

Mitchell, T. M., Shinkareva, S. V, Carlson, A., Chang, K.-M., Malave, V. L., Mason, R. a, & Just, M. A. (2008).
Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 1191-5. doi:10.1126/
science.1152876

Rajkumar, R., & White, M. (2014). Better Surface Realization through Psycholinguistics. Language and Linguistics
Compass, 8(10), 428-448.

White, M., Rajkumar, R., & Martin, S. (2007). Towards Broad Coverage Surface Realization with CCG. In
Proceedings of the Workshop on Using Corpora for NLG: Language Generation and Machine Translation (UCNLG
+MT}.

