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By way of a characterisation

* |nput:
— A “sentence plan”
— Unordered.
— Uninflected.

e Task:

— Map this to a syntactic structure
— Apply morphological rules
— Render as a string



Realisation = parsing in reverse?

* Parser:
— A transducer from strings to structures.
— Parsers model hypotheses.

e Realiser

— A transducer from deep structures (semantic-
syntactic) to strings.

— Realisers model choices.
(e.g. Rajkumar & White 2014)
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Part 1

CHOICES IN REALISATION



Input - Output

[ Event
TYPE declarative
PRED kick
TENSE past
PRED woman
AGENT
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ARGS
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Input — Output (Take 2)
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[ Event
TYPE declarative
VERB  kick
TENSE past
NOUN woman
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How specific is the input?

[ Event
TYPE  declarative
VERB kick
TENSE past
SUBJECT
ARGS
OBJECT

NOUN woman
DET 3
NUM pl
NOUN man
DET  the
NUM sg

* |nput differs wrt:
— Specification of argument roles (functional, semantic).
— Specification of function words (e.g. DET)
— Specification of morphological features (e.g. NUM)

e —

[ Event

TYPE  declarative
PRED kick
TENSE past
AGENT
ARGS
PATIENT

PRED woman
QUANT 3
PRED man
DEF true




Constituency-based representation

Syntax is hierarchical
and recursive. ~

Trees are a common
representation

- Head of NP Head of VP Dependent of V
D I REL: object
\.|,/

VP

A~ A~

DET N

N N
o

Also, feature structures ~ J

(graphs).

women klcked the

\ ) _J
|
Inflectional morphology: Inflectional morphology:
Noun + number (plural) Verb + tense (past)
Dependent of N \ ’
REL: determiner/ \

specifier
Morphosyntactic agreement:
Subject and verb agree for number.



Dependency-based representation

Example French sentence (from the Universal
Dependency Treebank; McDonald et al 2013):

-~

ADPMOD
ADPOBJ
. - i
NSUBJ A= \1()1) ADPOBJ

/ \ |2 rl’)(lsi\\v'r

Alexandre réside I\GL sa famille i—l quueux
NOUN VERB ADP DET NOUN ADP NOUN P

11



Knowledge sources

* Lexical knowledge:
— NB: Not all systems have a separate lexicon!
— Words + morphological rules
— Crucially: exceptions to the rules
— English:

* be 2 was, were Many verbs in English do not change
in the plural. This is the exception, not

e eat =2 ate, ate the rule.



Knowledge sources

* Syntactic knowledge:

— Knowledge of the right constituent order.
* English:
— S > NPy VP

— Three women kicked the man

— But several options become possible if, e.g.,
pragmatic factors come into play:
|t was three women who kicked the man. (it-cleft)
e The man was kicked by three women. (passive)



Not all rules are easy to state

* Modifier ordering in English (cf. Maalouf 2002;
Mitchell 2009):

— the large green ball

— ?the green large ball

 Example from Penn Treebank (after Callaway
2005):

— a 5100 million Oregon general obligation
veterans’ tax note issue.



Not all rules are easy to state

e Adverbial modifiers apparently can be placed
anywhere:

— For now, I’'ll wait and see.

— I’ll wait and see for now.
— I’ll wait for now and see.

e But (ex cited by Rajkumar & White 2014):

— Separately, the Federal Energy Regulatory Commission
turned down for now a request by Northeast seeking
approval of its possible purchase of PS of New Hampshire.
(WSJ0013.16).

— Separately, the Federal Energy Regulatory Commission
turned down a request by Northeast seeking approval of
its possible purchase of PS of New Hampshire for now.
(WSJ0013.16).




Not all rules are easy to state

* When should “that” be used? Is it always
optional?
— He said he’d go.
— He said that he’d go.

* But consider (cf Rajkumar & White 2014):

— He [said that [for the second month in a row, food
processors reported a shortage of non- fat dry milk]].
(WSJ0036.61)

— He [[said for the second month in a row], food
processors reported a shortage of nonfat dry milk].



The problem of (unintended)
ambiguity
* A choice can determine whether the output is

ambiguous or not.
— We saw this in the case of “that”.

 Modifier and determiner repetition:
— He shot the young lions and horses.
— He shot the young lions and the horses.
— He escorted the old men and horses.
— (Cf. Khan et al 2012, for experimental work)



By way of a revised characterisation

* |nput:
— A “sentence plan”
— Unordered.
— Uninflected.

— Possibly including pragmatic and other info.
* But this depends on the input specification.

e Task:

— Map this to a syntactic structure which communicates the info
and conveys the pragmatic intentions.
* |deally, avoid ambiguity in the process.
 |deally, respect linearisation rules.

— Apply morphological rules
— Render as a string



Part 2

A TYPOLOGY OF REALISERS



Grammar-based realisers

* Include explicit grammatical rules.

— Rules are hand-written or extracted automatically
from parsed corpora (treebanks).

— Represent linguistic choices as choices between
rules (also locally).

— Often, choose among alternatives on a “global”
level: which is the best sentence to realise a given
input?

— Typically use a chart parsing algorithm (on which,
more later).



Grammar-based realisers

1. Symbolic

May entertain multiple hypotheses.

Output represents the “best” choice based on
the rule-base and the algorithm.

2. Overgenerate-and-rank

Generate multiple outputs.

Rank these outputs using a statistical model.

“Best choice” = the one ranked highest by the
model, given its features.



Rules for Grammar-Based Realisers

* Rules may come from:

1.
2.

Hard labour (i.e. hand-coding)
Extraction from parsed corpora (treebanks)

* E.g. Hockenmaier & Steedman (2007): conversion of
the Penn Treebank into structures based on
Combinatory Categorial Grammar.

— Used with the OpenCCG Realiser.

e E.g. Callaway (2003): conversion of the Penn Treebank
into inputs for FUF/SURGE.



Extracting input from treebank

* Penn treebank input (Callaway 2003):

{2 (PP (IM Without)
(NP (MNP GM) ) )
(. .]
\NP-SBJ
(NP (JJ owvaerall) (HNS =salaes))
(PP (IN for)
(NP (DT the) (JJ other)
(MNP TU.S.) (NNS automakers)) )]
(VP (VBD waere)
(ADJTP-PRD (RB roughly) (JJ £lat)
(PP (IN with)
(NP (CD 1989) ([(HNNMES results ")13113)



Extracting input from treebank

* Conversion into feature structure for FUF/SURGE (Callaway, 2003)
 Note: this input is unordered.

{ {cat clause)
(circum ((accompaniment ((cat pp) (position front] (accomp-polarity -)
(np ((cat proper) (lex "GM"))}})))
(process ((type ascriptive) (tense past)))
(participants (({carrier ((cat common) (lex "sale") (number plural)
(describer ((cat adj) (lex "overall®)))))
(qualifier ({cat pp) (prep ((lex "for")})
(np ((cat common) (lex "automaker®) (definite yes)
(number plural) (status different)
(clagsifier ((cat proper) (lex "U.5."))))}})))
{attribute ({cat ap) (lex "flat") (modifier ({cat adv) (lex "roughly")))
h (qualifier ((cat pp) (prep {(lex "with"))]
(np ((cat common) (lex "result") (number plural)
(classifier ((cat date) (year 1983))))1}))))))

NB: Aim here is to use the input from the Penn Treebank to regenerate the original
sentence.

NOT to induce a grammar for FUF/SURGE (which is hand-coded).



Compare to input for OpenCCG

He has a point o s[dcl\np/np
he Wants to <TENSE>pres @

m ak e. <Arg0/ <Argx

(Rajkumar & he pomt

<NUM>sg SArgl>

White 2013) — -
) \ s[dcl]\np/(s[to]\

want.01
<TEN SE>pres

np/n <Afgo>/ \‘\rgb
st @ @make.%
s[b]\np/np
This input is also derived from the Penn Treebank.

Rules for OpenCCG can also be induced from the treebank.




Grammar-based, hand-crafted

 Grammar-based, using hand-crafted rules:
— FUF/SURGE (Elhadad & Robin, 1996)

* Based on Functional Unification Grammar.
* Models choices using unification of feature structures.
 Among the best coverage and BLEU score (Callaway, 2005).

— KPML (Bateman, 1997)
e Based on Systemic-Functional Grammar.
* Models choices as paths through a graph (systemic
network).

» Systemic networks include a combination of grammatical
and pragmatically-motivated choice points.



Grammar-based + reranking

* HALOGEN (Langkilde 2000, 2002)

— Earliest example of ranking model for NLG.

— Grammar is relatively “theory-neutral”, relatively few
rules.

— Ranking based on n-gram models.

* OpenCCG (White et al 2007)

— Based on Combinatory Categorial Grammar

— Grammar induced from the Penn Treebank
(Hockenmaier & Steedman 2007).

— Ranking (in current version) based on a variety of
features, not just n-grams.



Classification-based approaches

* Use multiple classifiers (chained) to make
decisions at a local level.

* Example: Fillipova & Strube (2009):

— Input: Constituents (subject, object, adverb...)

1.
2.
3.

Use a classifier to identify the first constituent.
Use a second classifier to sort the remainder.

Insert verb after the subject (wherever it
happens to be).



Things to note

* How detailed the input is...

 What the input includes (semantics, morpho-
syntax, pragmatic info)...

e ...all depends on your theory of grammar.



Part 3

AN OVERVIEW OF THE BASIC
ALGORITHM



Many ways to say the same thing

 Example input: ORDER(eat(you,chicken))
— Eat chicken!
=1t is required that you eat chicken!
=1t is required that you eat poulet!
—Poulet should be eaten by you.
—2You should eat chicken/chickens.
— Chicken/Chickens should be eaten by you.

* Of course, this is assuming we have a non-
trivial grammar that supports multiple
choices.



Chart Generation

* Historically, chart algorithms were developed
for parsing.
— Proposed as solutions for realisation by Shieber
(1988) and Kay (1996).

— Exposition here follows Kay (1996).



The basic idea

* The algorithm schema requires two main
components:

— Agenda: holds bits of input, in some order
— Chart: holds (partial) outputs
— Algorithm:

 Removes items from the Agenda and puts them on the
Chart

* Merges items on the chart
* Places new items back on the Agenda
— Major pro:

* Allows us to entertain multiple realisation hypotheses while
minimising extra work.



Example (Kay 1996)

A very simple input semantics (very flat!):

* r:run(r), past(r), fast(r), argl(r,j), name(j, John)

 “There’s a run event whose agent is John and the

event was fast.”
 Our ‘r and ‘j’ are constants.

A very simple lexicon:

Word | Category ___| Semantics ___

John

ran

fast
quickly

np(x)
vp(x,y)

adv(x)
adv(x)

X: name(x, John)
x: run(x), argl (x,
y), past(x)

x: fast(x)

x: fast(x)



Example (Kay 1996)

A very simple set of grammar rules:

* s(x) =2 nply), vp(x,y)
e vp(x) =2 vp(x) adv(x)



s(x) = np(y), vp(x,y)
vp(x) = vp(x) adv(x)

r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA CHART

Word | Category | Semantics | Word | Category | Semantics
John np(x) X: name(x, -

John)
ran vp(x,y) X: run(x),

argl (x, y),

past(x)
fast adv(x) x: fast(x)

quickly adv(x) x: fast(x)



s(x) = np(y), vp(x,y)
vp(x) = vp(x) adv(x)

r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA CHART
| Word | Category | Semantics Word | Category | Semantics
ran vp(x,y) X: run(x), John np(x) X: name(x,
argl (XI y)l - JOhn)
past(x)
fast adv(x) x: fast(x)

quickly adv(x) x: fast(x)



r: run(r), past(r), fast(r),

argl(r,j), name(j, John)

| Word ___| Category _| Semantics__

AGENDA
fast adv(x)
quickly adv(x)

x: fast(x)

x: fast(x)

s(x) = np(y), vp(x,y)
vp(x) =2 vp(x) adv(x)

CHART
Word | Category | Semantics
John np(x) X: name(x,
John)
ran vp(x,y) X: run(x),
argl (x, y),
past(x)

Can merge these on the basis
of the s(x) rule.

John ran



r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) = vp(x) adv(x)
AGENDA CHART
Word | Category | Semantics Word | Category | Semantics
fast adv(x) x: fast(x) # John np(x) X: name(x,
quickly adv(x) x: fast(x) John)
Johnran  S(r) r:run(r), fElL vp(x,y) x: run(x),
past(r), argl (x, y),
argl(r,j), past(x)
name(j,
john)

Not done yet! Haven't
covered all of input
semantics.



r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) 2 vp(x) adv(x)
AGENDA CHART
|Word | Category | Semantics |Word | Category | Semantics
quickly adv(x) x: fast(x) John np(x) X: name(x,
] _ John)
ohn ran S(r) r:run(r),
past(r), ran vp(x,y) X: run(x),
argl(rj), argl (x, y),
name(j, past(x)
john) fast adv(x) x: fast(x)

Can merge on the basis of the
vp(x) rule.
ran fast




r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) =2 vp(x) adv(x)
AGENDA CHART
| Word | Category | Semantics |Word | Category | Semantics
quickly adv(x) x: fast(x) # John np(x) X: name(x,
Johnran  S(r) r:run(r), John)
past(r), ran vp(x,y) X: run(x),
argl(rj), argl (x, y),
name(j, past(x)
john) fast adv(x) x: fast(x)
ran fast vp(x) r: run(r),
past(r),
fast(r),

argl(r,j)



r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) = vp(x) adv(x)
AGENDA CHART
Word | Category | Semantics | | Word | Category | Semantics |
John ran S(r) r:run(r), John np(x) X: name(x,
past(r), John)
argl(r,.j), ran vp(x,y) x: run(x),
name(j, argl (x, y),
john) past(x)
ran fast vp(x) r: run(r), fast adv(x) x: fast(x)
past(r), .
fast(r). quickly adv(x) x: fast(x)

argl(r,j)

Can merge on the basis of the
vp(x) rule.
ran quickly




r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA
| Word ___| Category _| Semantics__

John ran S(r) r:run(r),
past(r),
arg1(r,j),
name(j,
john)

ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)

ran quickly Vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)

s(x) = np(y), vp(x,y)
vp(x) =2 vp(x) adv(x)

CHART
Word | Category | Semantics

John np(x) X: name(x,
John)

ran vp(x,y) X: run(x),
argl (x, y),
past(x)

fast adv(x) x: fast(x)

quickly adv(x) x: fast(x)



r: run(r), past(r), fast(r),

argl(r,j), name(j, John)

AGENDA

s(x) = np(y), vp(x,y)
vp(x) 2 vp(x) adv(x)

CHART

| Word ___| Category _| Semantics__ Word __| Category _| Semantics__

ran fast vp(x)

ran quickly Vp(x)

r: run(r),
past(r),
fast(r),
argl(r,j)
r: run(r),
past(r),
fast(r),
argl(r,Jj)

John

ran

fast

quickly

John ran

np(x)

vp(x,y)

adv(x)

adv(x)
S(r)

X: name(x,
John)

X: run(x),
argl (x, y),
past(x)

x: fast(x)
x: fast(x)
r:run(r),
past(r),

arg1(r,j),
name(j,
john)



r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

X: name(x,
John)

X: run(x),
argl (x, y),
past(x)

x: fast(x)
x: fast(x)

r:run(r),
past(r),
arg1(r,j),
name(j,
john)

argl(r,j), name(j, John) vp(x) = vp(x) adv(x)
AGENDA CHART
| Word | Category | Semantics Word | Category | Semantics
ran quickly Vp(x) r: run(r), John np(x)
past(r),
fast(r), ran vp(x,y)
argl(r,j)
fast adv(x)
quickly adv(x)
John ran S(r)
Can merge these on the basis
ran fast vp(x)

of the s(x) rule.
John ran fast

r: run(r),
past(r),
fast(r),
argl(r,j)



r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)

argl(r,j), name(j, John) vp(x) 2 vp(x) adv(x)
AGENDA CHART
Word | Category | Semantics | | Word | Category | Semantics |
ran quickly Vp(x) r: run(r), John np(x) x: name(x,
past(r), - John)
fast(r), ran vp(X,y) x: run(x),
argl(r,j) argl (x, y),
past(x)
John ran S(x) Complete!
fast fast adv(x) x: fast(x)
quickly adv(x) x: fast(x)
John ran S(r) r:run(r),
past(r),
argl(r,j),
name(j,
john)
ran fast vp(x) r: run(r),
past(r),
fast(r),

argl(r,j)



r: run(r), past(r), fast(r), s(x) = np(y), vp(x,y)
argl(r,j), name(j, John) vp(x) = vp(x) adv(x)

AGENDA CHART
Word | Category | semantics __ Word | Category | Semantics _

Johnran  S(x) Complete! John ran S(r) r:run(r),

fast past(r),
argl(r,j),
name(j,
john)

ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)
ran quickly Vp(x) r: run(r),
past(r),
Can merge these on the basis fast(r),
of the s(x) rule. argl(r.))

John ran quickly




r: run(r), past(r), fast(r),
argl(r,j), name(j, John)

AGENDA
Word | Category | Semantics
John ran S(r) Complete!
fast

John ran S(r) Complete
quickly

Done! Have covered all the
input semantics.

NB: Two realisations
produced.

s(x) = np(y), vp(x,y)
vp(x) 2 vp(x) adv(x)

CHART

Word __| Category _| Semantics__

John ran S(r) r:run(r),
past(r),

argl(r,j),
name(j,
john)
ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(rj)
ran quickly Vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)



Some things to notice

* We implicitly restricted the process so that
the application of a rule can only cover a given

part of the input once.

° AVOIdS thlngs |Ike John ran S(r) r:run(r),

. ast(r),
— ran fast quickly srg1((rfj),
name(j,
john)
ran fast vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)
ran quickly vp(x) r: run(r),
past(r),
fast(r),
argl(r,j)



Some further details

* |n this rough outline:

— Every time we put an edge on the chart, we
consider whether it can somehow interact with
any other edge of the chart.

e Solution:

— Only consider interactions where edges have
“open positions” in which the current edge can be
slotted in.

* The notion of “active” edges.



Some further details

* Consider:
NP> DETAPN
* AP 2 Adj*
e The tall, dark, handsome man

e Multiple applications of the NP modification rule. Several
orderings possible.

* Each ordering could end up being merged with the NP!
* Exponentiall!

e Solution:

— Keep track of which entities in the input have been
covered by the edges on the chart.

— Only construct maximal edges when merging:
 Don’t build the tall dark man if that leaves out handsome.



Part 4

OVERGENERATION AND RANKING



Nitrogen and HALogen

Pioneering realisation systems with wide coverage (i.e.
handle many phenomena of English grammar)

Based on overgeneration/ranking

HALogen (Langkilde-Geary 2002) is a successor to
Nitrogen (Langkilde & Knight 1998)

— main differences:

* representation data structure for possible realisation
alternatives

* HALogen handles more grammatical features



Structure of HALogen

Symbolic Generator

eRules to map input

representation to syntactic

structures multiple outputs

represented in a “forest”

el exicon

eMorphology

Statistical ranker
best sentence en-gram model (from Penn

Treebank)




HALogen Input

Grammatical specification
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))

Semantic specification
(el/ eat
:agent (d1 / dog)
:patient (b1 / bone
:premod(m1 / meaty))
:temp-loc(tl / today))

Labeled feature-value
representation specifying
properties and relations of
domain objects (el, d1, etc)

Recursively structured
Order-independent

Can be either grammatical or
semantic (or mixture of both)

— recasting mechanism maps from
one to another



HALogen base generator

e Consists of about 255 hand-written rules

* Rules map an input representation into a packed set of

possible output expressions.
— Each part of the input is recursively processed by the rules,
until only a string is left.

e Types of rules:

1. recasting
2. ordering

3. filling

4. morphing



Recasting

* Map semantic input representation to one
that is closer to surface syntax.

Semantic specification IF relation = :agent
(el/ eat AND sentence is not passive
:patient (b1 / bone THEN map relation to :subject

:premod(m1 / meaty))

:temp-loc(tl / today) - ——
:agent (d1 / dog)) Grammatical specification

(el/ eat
\’ :object (b1 / bone

:premod(m1 / meaty))
:adjunct(t1 / today)
:subject (d1 / dog))




Ordering

Assign a linear order to the values in the input.

Grammatical specification
(el / eat
:object (b1 /b
object (b1 / bone Put subject first unless sentence is
:premod(m1 / meaty)) passive.
:adjunct(tl / today) Put adjuncts sentence-finally.
:subject (d1 / dog))

Grammatical specification + order
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))




Filling

* Ifinputis under-specified for some features, add all the possible
values for them.

— NB: this allows for different degrees of specification, from minimally
to maximally specified input.

— Can create multiple “copies” of same input

Grammatical specification + order +:TENSE (past)
(el / eat
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(t1 / today)) +:TENSE (present)




Morphing

* Given the properties of parts of the input, add
the correct inflectional features.

Grammatical specification + order
(el / eat
:tense(past)
:subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty)) - ——
. Grammatical specification + order
:adjunct(tl / today))
(el / ate
~—— :subject (d1 / dog)
:object (b1 / bone
:premod(m1 / meaty))
:adjunct(tl / today))




The output of the base generator

* Problem:

— a single input may have literally hundreds of
possible realisations after base generation

— these need to be represented in an efficient way
to facilitate search for the best output

* Options:
— word lattice
— forest of trees



Option 1: lattice structure (Langkilde-Geary

2000)

, .
=
1
2 ’? !
1 x

E
H

“You may have to eat chicken”: 576 possibilities!

4
(N



Properties of lattices

In a lattice, a complete left-right path represents a
possible sentence.

Lots of duplication!

— e.g. the same word “chicken” occurs multiple times
— ranker will be scoring the same substring more than once

In a lattice path, every word is dependent on all other
words.

— can’t model local dependencies



Option 2: Forests (Langkilde-Geary ‘00,’02)

S
OR
S.328 S 358
A /\
PRP.3 VP.327 NP.318 VP.357
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OR

m to be eaten by

the chicken



Properties of forests

* Efficient representation:

— each individual constituent represented only once, with
pointers

— ranker will only compute a partial score for a subtree once
— several alternatives represented by disjunctive (“OR”) nodes

* Equivalent to a non-recursive context-free grammar
— S.469 - S.328
— S.469 - S.358



Statistical ranking

* Uses n-gram language models to choose the best
realisation r:

n
Phest = argmaxreforest | ‘P(WZ |W1"'Wi—1)
i=1

n
ArgMax . g, g H P(w; | w;_) [Markov assumption|
i=1



Performance of HALogen

Minimally specified input frame (bigram model):

* |t would sell its fleet age of Boeing Co. 707s because of
maintenance costs increase the company announced earlier.

Minimally specified input frame (trigram model):

 The company earlier announced it would sell its fleet age of
Boeing Co. 707s because of the increase maintenance costs.

Almost fully specified input frame:

* Earlier the company announced it would sell its aging fleet of
Boeing Co. 707s because of increased maintenance costs.



Observations

* The usual issues with n-gram models apply:

— bigger n > better output, but more data
sparseness

* Domain dependent

— relatively easy to train, assuming corpus in the
right format



Bevond n-grams?

* N-gram models rank purely based on word
sequences.

* Recent work has begun to consider factoring
in other features during re-ranking.
— This takes us beyond simple language models.
— Consider factored language models, for example.



Example: Distance-based features

e Recall:

— Separately, the Federal Energy Regulatory Commission
turned down for now a request by Northeast seeking
approval of its possible purchase of PS of New
Hampshire. (WSJ0013.16).

— Separately, the Federal Energy Regulatory Commission
turned down a request by Northeast seeking approval
of its possible purchase of PS of New Hampshire for
now. (WSJ0013.16).

e Distance-based features can cause a ranker to
orefer outputs where the modifier is closer to the
nost.




Example: Agreement features

* |f inputis underspecified w.r.t. inflection, we
would like to enable our ranker to prefer
sentences where subject-verb agreement is
correct.

— E.g. agreement based on animacy and number.

— Can be compromised by distance (e.g. with a WH-
clause between subject NP and Verb).

— N-gram models can miss this.

* The car, which was bought by the manager, was/were
damaged.
* The people who/which/that bought cigarettes...



But wait..

* Why not put these directly in the grammar?

— Grammar is then guaranteed to only overgenerate
with correct alternatives.

— Ranking can proceed as normal.

 The main problems:

— Not all rules are easy to specify (cf. modifier
ordering);

— Some rules have a lot of exceptions, sub-
regularities etc.



Part 6

REALISATION ENGINES



A realisation engine

* Unlike a realiser, a realisation engine is simply
a software library which:

— Performs linearisation

— Performs morphological inflection
— i.e. generates correct syntactic structures

BUT:

— Leaves the choices up to the user/engineer.



SimpleNLG

SimpleNLG (Gatt & Reiter 2009):

— Developed at Aberdeen
— Java API to generate English sentences

— Versions now exist for French (Vaudry & Lapalme 2013),
German (Bollman 2011), Brazilian Portugese (de Oliveira &
Sripada 2014).

Features:
— No input specification.
— No choice-making behaviour, except for basic linearisation and
inflection decisions.
— Allows mixture of canned text and syntax.
— Theory-neutral (except for definition of phrase and word types).

— Reasonable coverage (but not formally evaluated).



SimpleNLG Example

» Target sentence: Once upon a time there was a cat.

SPhraseSpec s = this.phraseFactory.createClause();
s.setSubject("there");

VPPhraseSpec vp = this.phraseFactory.createVerbPhrase("be");
NPPhraseSpec np = this.phraseFactory.createNounPhrase("a", "cat");
vp.setComplement(np);

s.setVerbPhrase(vp);

s.setFeature(Feature.TENSE, Tense.PAST);

StringElement string = new StringElement(“Once upon a time”);
s.setFrontModifier(string);



Why bother?

e Often, developers of NLG systems are interested in
other parts of the NLG process.

— |.e. don’t want to bother with a sophisticated realisation
component.

* Full control
— The fact that it’s theory-neutral helps.

* Simplicity
— Used by quite a large community, accessible to non-
linguists.
— Used also by individuals interested in using an NL front-
end, but not really doing “full-fledged” NLG.



Part 6

EVALUATING REALISERS



The typical evaluation setup

Corpus with Extract inputs

annotations ‘ from corpus

Regenerate the
sentences.

Comparison using some
evaluation metric.



Evaluation metrics

* Coverage:

— How much of the corpus does the realiser manage
to re-generate?

 What proportion does it regenerate exactly?
 What proportion does it have no output for?

e String overlap:
— Simple String Accuracy
— BLEU

— Both of these give average scores over the test
set.



Looking under the hood

* Simple string-based averages don’t tell us what it is
exactly that is going wrong.

e Callaway (2005):

— Exhaustive analysis of errors made by FUF/SURGE against
the Penn Treebank.

— Very high coverage, highest BLEU score recorded to date.

— Errors arise from a variety of sources:
* Errorsin the corpus annotation.
* Errors during transformation (extraction of inputs from corpus)
* Errors of syntax (problems with rules)



Current Frontiers in Realisation

* Improving realisers by taking into account
more linguistic features.

— Re-ranking, or grammar engineering?
* Multilinguality:

— Most realisation work done on English. Other
languages have very different (sometimes more
complex challenges).

— Problem: corpora from which to induce
grammars, train re-rankers.



Some final observations

* Traditionally, realisation is viewed as the final
stage of NLG.

 However, lexicalisation, aggregation etc are
often thought of as sub-tasks of realisation.

e As statistical models get more sophisticated,
we see realisation also working with:
— Lexical features

— Pragmatic features
— Information structure
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