Realisation

Albert Gatt
Institute of Linguistics, University of Malta
http://staff.um.edu.mt/albert.gatt/
albert.gatt@um.edu.mt
The “consensus” architecture

Communicative goal

Document Planner

document plan

Microplanner

text specification

Surface Realiser

text
By way of a characterisation

• Input:
 – A “sentence plan”
 – Unordered.
 – Uninflected.

• Task:
 – Map this to a syntactic structure
 – Apply morphological rules
 – Render as a string
Realisation = parsing in reverse?

• Parser:
 – A transducer from strings to structures.
 – Parsers model hypotheses.

• Realiser
 – A transducer from deep structures (semantic-syntactic) to strings.
 – Realisers model choices.
 (e.g. Rajkumar & White 2014)
Preview

1. Overview of the realisation process
 – Choices involved

2. Types of realisers.

3. Statistical realisation in more detail
 – Overgeneration and ranking
 – The basic chart generation algorithm
 – Ranking via corpus data

4. Realisation engines: the case of SimpleNLG

5. Evaluating realisers
Part 1

CHOICES IN REALISATION
Input - Output

Event

- TYPE: declarative
- PRED: kick
- TENSE: past

ARGS

- AGENT
- QUANT
 - PRED: woman
 - QUANT: 3
- PATIENT
 - PRED: man
 - DEF: true

NP

- DET: three
- N: woman

VP

- V: kicked

S

- NP
- DET: the
- N: man
Input – Output (Take 2)

Event

TYPE declarative
VERB kick
TENSE past

ARGS

SUBJECT

NOUN woman
DET 3
NUM pl

OBJECT

NOUN man
DET the
NUM sg

S

NP

DET three
N women

VP

V kicked

NP

DET the
N man
How specific is the input?

- Input differs wrt:
 - Specification of argument roles (functional, semantic).
 - Specification of function words (e.g. DET)
 - Specification of morphological features (e.g. NUM)
Constituency-based representation

Syntax is hierarchical and recursive.

Trees are a common representation.

Also, feature structures (graphs).

Inflectional morphology:
- Noun + number (plural)
- Verb + tense (past)

Morphosyntactic agreement:
Subject and verb agree for number.
Dependency-based representation

- Example French sentence (from the Universal Dependency Treebank; McDonald et al 2013):
Knowledge sources

• Lexical knowledge:
 – NB: Not all systems have a separate lexicon!
 – Words + morphological rules
 – Crucially: exceptions to the rules
 – English:
 • be \rightarrow was, were
 • eat \rightarrow ate, ate

Many verbs in English do not change in the plural. This is the exception, not the rule.
Knowledge sources

• Syntactic knowledge:
 – Knowledge of the right constituent order.
 • English:
 – S → NP_{subj} VP
 – VP → V NP_{obj}
 – *Three women kicked the man*
 – But several options become possible if, e.g., pragmatic factors come into play:
 • *It was three women who kicked the man.* (it-cleft)
 • *The man was kicked by three women.* (passive)
Not all rules are easy to state

• Modifier ordering in English (cf. Maalouf 2002; Mitchell 2009):
 – the large green ball
 – ?the green large ball

• Example from Penn Treebank (after Callaway 2005):
 – a $100 million Oregon general obligation veterans’ tax note issue.
Not all rules are easy to state

• Adverbial modifiers apparently can be placed anywhere:
 – *For now, I’ll wait and see.*
 – *I’ll wait and see for now.*
 – *I’ll wait for now and see.*

• But (ex cited by Rajkumar & White 2014):
 – *Separately, the Federal Energy Regulatory Commission turned down for now a request by Northeast seeking approval of its possible purchase of PS of New Hampshire.* (WSJ0013.16).
 – *Separately, the Federal Energy Regulatory Commission turned down a request by Northeast seeking approval of its possible purchase of PS of New Hampshire for now.* (WSJ0013.16).
Not all rules are easy to state

- When should “that” be used? Is it always optional?
 - He said he’d go.
 - He said *that* he’d go.

- But consider (cf Rajkumar & White 2014):
 - He [*said that* [for the second month in a row, food processors reported a shortage of non-fat dry milk]]. (WSJ0036.61)
 - He [*said for the second month in a row, food processors reported a shortage of nonfat dry milk*].
The problem of (unintended) ambiguity

• A choice can determine whether the output is ambiguous or not.
 – We saw this in the case of “that”.

• Modifier and determiner repetition:
 – *He shot the young lions and horses.*
 – *He shot the young lions and the horses.*
 – *He escorted the old men and horses.*
 – *(Cf. Khan et al 2012, for experimental work)*
By way of a revised characterisation

• Input:
 – A “sentence plan”
 – Unordered.
 – Uninflected.
 – Possibly including pragmatic and other info.
 • But this depends on the input specification.

• Task:
 – Map this to a syntactic structure which communicates the info and conveys the pragmatic intentions.
 • Ideally, avoid ambiguity in the process.
 • Ideally, respect linearisation rules.
 – Apply morphological rules
 – Render as a string
Part 2

A TYPOLOGY OF REALISERS
Grammar-based realisers

• Include explicit grammatical rules.
 – Rules are hand-written or extracted automatically from parsed corpora (treebanks).
 – Represent linguistic choices as choices between rules (also locally).
 – Often, choose among alternatives on a “global” level: which is the best sentence to realise a given input?
 – Typically use a chart parsing algorithm (on which, more later).
Grammar-based realisers

1. Symbolic
 - May entertain multiple hypotheses.
 - Output represents the “best” choice based on the rule-base and the algorithm.

2. Overgenerate-and-rank
 - Generate multiple outputs.
 - Rank these outputs using a statistical model.
 - “Best choice” = the one ranked highest by the model, given its features.
Rules for Grammar-Based Realisers

• Rules may come from:
 1. Hard labour (i.e. hand-coding)
 2. Extraction from parsed corpora (treebanks)
 • E.g. Hockenmaier & Steedman (2007): conversion of the Penn Treebank into structures based on Combinatory Categorial Grammar.
 – Used with the OpenCCG Realiser.
 • E.g. Callaway (2003): conversion of the Penn Treebank into inputs for FUF/SURGE.
Extracting input from treebank

• Penn treebank input (Callaway 2003):

```
(S (PP (IN Without))
   (NP (NNP GM)))
  , ,
(NP-SBJ
   (NP (JJ overall) (NNS sales))
   (PP (IN for)
      (NP (DT the) (JJ other)
       (NNP U.S.) (NNS automakers))))
(VP (VBD were)
   (ADJP-PRD (RB roughly) (JJ flat)
      (PP (IN with)
       (NP (CD 1989) (NNS results "")))))
```
Extracting input from treebank

- Conversion into feature structure for FUF/SURGE (Callaway, 2003)
- Note: this input is unordered.

NB: Aim here is to use the input from the Penn Treebank to regenerate the original sentence.
NOT to induce a grammar for FUF/SURGE (which is hand-coded).
Compare to input for OpenCCG

He has a point he wants to make.
(Rajkumar & White 2013)

This input is also derived from the Penn Treebank. Rules for OpenCCG can also be induced from the treebank.
Grammar-based, hand-crafted

• Grammar-based, using hand-crafted rules:
 – FUF/SURGE (Elhadad & Robin, 1996)
 • Based on Functional Unification Grammar.
 • Models choices using unification of feature structures.
 • Among the best coverage and BLEU score (Callaway, 2005).
 – KPML (Bateman, 1997)
 • Based on Systemic-Functional Grammar.
 • Models choices as paths through a graph (systemic network).
 • Systemic networks include a combination of grammatical and pragmatically-motivated choice points.
Grammar-based + reranking

• HALOGEN (Langkilde 2000, 2002)
 – Earliest example of ranking model for NLG.
 – Grammar is relatively “theory-neutral”, relatively few rules.
 – Ranking based on n-gram models.

• OpenCCG (White et al 2007)
 – Based on Combinatory Categorial Grammar
 – Grammar induced from the Penn Treebank (Hockenmaier & Steedman 2007).
 – Ranking (in current version) based on a variety of features, not just n-grams.
Classification-based approaches

• Use multiple classifiers (chained) to make decisions at a local level.

• Example: Fillipova & Strube (2009):
 – Input: Constituents (subject, object, adverb...)
 1. Use a classifier to identify the first constituent.
 2. Use a second classifier to sort the remainder.
 3. Insert verb after the subject (wherever it happens to be).
Things to note

• How detailed the input is...
• What the input includes (semantics, morpho-syntax, pragmatic info)...

• ... all depends on your theory of grammar.
Part 3

AN OVERVIEW OF THE BASIC ALGORITHM
Many ways to say the same thing

• Example input: ORDER(eat(you,chicken))
 → Eat chicken!
 → It is required that you eat chicken!
 → It is required that you eat poulet!
 → Poulet should be eaten by you.
 → You should eat chicken/chickens.
 → Chicken/Chickens should be eaten by you.

• Of course, this is assuming we have a non-trivial grammar that supports multiple choices.
Chart Generation

• Historically, chart algorithms were developed for parsing.
The basic idea

• The algorithm schema requires two main components:
 – **Agenda**: holds bits of input, in some order
 – **Chart**: holds (partial) outputs
 – **Algorithm**:
 • Removes items from the Agenda and puts them on the Chart
 • Merges items on the chart
 • Places new items back on the Agenda
 – Major pro:
 • Allows us to entertain multiple realisation hypotheses while minimising extra work.
Example (Kay 1996)

A very simple input semantics (very flat!):

• r: run(r), past(r), fast(r), arg1(r,j), name(j, John)
• “There’s a run event whose agent is John and the event was fast.”
• Our ‘r’ and ‘j’ are constants.

A very simple lexicon:

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), argl (x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
</tbody>
</table>
Example (Kay 1996)

A very simple set of grammar rules:

• $s(x) \rightarrow np(y), \ vp(x,y)$
• $vp(x) \rightarrow \ vp(x) \ adv(x)$
r: run(r), past(r), fast(r), arg1(r,j), name(j, John)

s(x) → np(y), vp(x,y)
vp(x) → vp(x) adv(x)

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), arg1(x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
</tbody>
</table>
r: run(r), past(r), fast(r), arg1(r,j), name(j, John)

s(x) \rightarrow np(y), vp(x,y)
vp(x) \rightarrow vp(x) adv(x)

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), arg1(x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
</tbody>
</table>
r: run(r), past(r), fast(r),
arg1(r,j), name(j, John)

Can merge these on the basis
of the s(x) rule.
John ran
r: run(r), past(r), fast(r), arg1(r,j), name(j, John)

AGENDA

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>r: run(r), past(r), arg1(r,j), name(j, John)</td>
</tr>
</tbody>
</table>

CHART

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), arg1(x, y), past(x)</td>
</tr>
</tbody>
</table>

s(x) → np(y), vp(x,y)
vp(x) → vp(x) adv(x)

Not done yet! Haven’t covered all of input semantics.
r: run(r), past(r), fast(r), arg1(r,j), name(j, John)

Can merge on the basis of the vp(x) rule.

ran fast
r: \(\text{run}(r), \text{past}(r), \text{fast}(r) \),
arg1(r,j), name(j, John)

\[s(x) \rightarrow \text{np}(y), \text{vp}(x,y) \]
\[\text{vp}(x) \rightarrow \text{vp}(x) \text{ adv}(x) \]

AGENDA

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>r: (\text{run}(r), \text{past}(r), \text{arg1}(r,j), \text{name}(j, John))</td>
</tr>
<tr>
<td>ran fast</td>
<td>vp(x)</td>
<td>r: (\text{run}(r), \text{past}(r), \text{fast}(r), \text{argl}(r,j))</td>
</tr>
</tbody>
</table>

CHART

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), argl(x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
</tbody>
</table>
r: run(r), past(r), fast(r),
arg1(r,j), name(j, John)

Can merge on the basis of the vp(x) rule.
ran quickly
r: run(r), past(r), fast(r),
arg1(r,j), name(j, John)

s(x) \rightarrow np(y), vp(x,y)
vp(x) \rightarrow vp(x) adv(x)

AGENDA

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>r: run(r), past(r), arg1(r,j), name(j, John)</td>
</tr>
<tr>
<td>ran fast</td>
<td>vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
<tr>
<td>ran quickly</td>
<td>Vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
</tbody>
</table>

CHART

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), arg1(x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
</tbody>
</table>
r: run(r), past(r), fast(r), arg1(r,j), name(j, John)

s(x) → np(y), vp(x,y)
vp(x) → vp(x) adv(x)

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ran fast</td>
<td>vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
<tr>
<td>ran quickly</td>
<td>Vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), arg1(x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>r: run(r), past(r), arg1(r,j), name(j, John)</td>
</tr>
</tbody>
</table>
Can merge these on the basis of the $s(x)$ rule.

John ran fast
AGENDA

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ran quickly</td>
<td>Vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
<tr>
<td>John ran fast</td>
<td>S(x)</td>
<td>Complete!</td>
</tr>
</tbody>
</table>

CHART

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>np(x)</td>
<td>x: name(x, John)</td>
</tr>
<tr>
<td>ran</td>
<td>vp(x,y)</td>
<td>x: run(x), arg1(x, y), past(x)</td>
</tr>
<tr>
<td>fast</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>quickly</td>
<td>adv(x)</td>
<td>x: fast(x)</td>
</tr>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>r: run(r), past(r), arg1(r,j), name(j, John)</td>
</tr>
<tr>
<td>ran fast</td>
<td>vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
</tbody>
</table>
r: run(r), past(r), fast(r), arg1(r,j), name(j, John)

Can merge these on the basis of the s(x) rule.

John ran quickly
Agenda

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John ran fast</td>
<td>S(r)</td>
<td>Complete!</td>
</tr>
<tr>
<td>John ran quickly</td>
<td>S(r)</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Chart

\[
s(x) \rightarrow \text{np}(y), \text{vp}(x,y) \\
\text{vp}(x) \rightarrow \text{vp}(x) \text{adv}(x)
\]

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>(r:\text{run}(r), \text{past}(r), \text{arg1}(r,j), \text{name}(j, \text{John}))</td>
</tr>
<tr>
<td>ran fast</td>
<td>vp(x)</td>
<td>(r:\text{run}(r), \text{past}(r), \text{fast}(r), \text{arg1}(r,j))</td>
</tr>
<tr>
<td>ran quickly</td>
<td>Vp(x)</td>
<td>(r:\text{run}(r), \text{past}(r), \text{fast}(r), \text{arg1}(r,j))</td>
</tr>
</tbody>
</table>

Done! Have covered all the input semantics.
NB: Two realisations produced.
Some things to notice

- We implicitly restricted the process so that the application of a rule can only cover a given part of the input once.
- Avoids things like:
 - *ran fast quickly*

<table>
<thead>
<tr>
<th>Word</th>
<th>Category</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>John ran</td>
<td>S(r)</td>
<td>r: run(r), past(r), arg1(r,j), name(j, john)</td>
</tr>
<tr>
<td>ran fast</td>
<td>vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
<tr>
<td>ran quickly</td>
<td>vp(x)</td>
<td>r: run(r), past(r), fast(r), arg1(r,j)</td>
</tr>
</tbody>
</table>
Some further details

• In this rough outline:
 – Every time we put an edge on the chart, we consider whether it can somehow interact with any other edge of the chart.

• Solution:
 – Only consider interactions where edges have “open positions” in which the current edge can be slotted in.
 • The notion of “active” edges.
Some further details

• Consider:
 • NP → DET AP N
 • AP → Adj*
 • *The tall, dark, handsome man*
 • Multiple applications of the NP modification rule. Several orderings possible.
 • Each ordering could end up being merged with the NP!
 • Exponential!

• Solution:
 – Keep track of which entities in the input have been covered by the edges on the chart.
 – Only construct maximal edges when merging:
 • Don’t build *the tall dark man* if that leaves out *handsome*.
Nitrogen and HALogen

• Pioneering realisation systems with wide coverage (i.e. handle many phenomena of English grammar)
• Based on overgeneration/ranking
• HALogen (Langkilde-Geary 2002) is a successor to Nitrogen (Langkilde & Knight 1998)
 – main differences:
 • representation data structure for possible realisation alternatives
 • HALogen handles more grammatical features
Structure of HALogen

Symbolic Generator
- Rules to map input representation to syntactic structures
- Lexicon
- Morphology

Statistical ranker
- n-gram model (from Penn Treebank)

Multiple outputs represented in a “forest”

best sentence
HALogen Input

Grammatical specification
(e1 / eat
 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

Semantic specification
(e1 / eat
 :agent (d1 / dog)
 :patient (b1 / bone
 :premod(m1 / meaty))
 :temp-loc(t1 / today))

- Labeled feature-value representation specifying properties and relations of domain objects (e1, d1, etc)
- Recursively structured
- Order-independent
- Can be either grammatical or semantic (or mixture of both)
 - recasting mechanism maps from one to another
HALogen base generator

- Consists of about 255 hand-written rules
- Rules map an input representation into a packed set of possible output expressions.
 - Each part of the input is recursively processed by the rules, until only a string is left.
- Types of rules:
 1. recasting
 2. ordering
 3. filling
 4. morphing
Recasting

• Map semantic input representation to one that is closer to surface syntax.

Semantic specification
(e1 / eat
 :patient (b1 / bone
 :premod(m1 / meaty))
 :temp-loc(t1 / today)
 :agent (d1 / dog))

Grammatical specification
(e1 / eat
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today)
 :subject (d1 / dog))

IF relation = :agent
AND sentence is not passive
THEN map relation to :subject
Ordering

• Assign a linear order to the values in the input.

Grammar specification

(e1 / eat
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today)
 :subject (d1 / dog))

Grammar specification + order

(e1 / eat
 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

Put subject first unless sentence is passive.
Put adjuncts sentence-finally.
Filling

• If input is under-specified for some features, add all the possible values for them.
 – NB: this allows for different degrees of specification, from minimally to maximally specified input.
 – Can create multiple “copies” of same input

Grammatical specification + order

e1 / eat
 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

+:TENSE (past)

+:TENSE (present)
Morphing

• Given the properties of parts of the input, add the correct inflectional features.

Grammatical specification + order
(e1 / eat
 :tense(past)
 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))

Grammatical specification + order
(e1 / ate
 :subject (d1 / dog)
 :object (b1 / bone
 :premod(m1 / meaty))
 :adjunct(t1 / today))
The output of the base generator

• Problem:
 – a single input may have literally hundreds of possible realisations after base generation
 – these need to be represented in an efficient way to facilitate search for the best output

• Options:
 – word lattice
 – forest of trees
Option 1: lattice structure (Langkilde-Geary 2000)

“You may have to eat chicken”: 576 possibilities!
Properties of lattices

• In a lattice, a complete left-right path represents a possible sentence.

• Lots of duplication!
 – e.g. the same word “chicken” occurs multiple times
 – ranker will be scoring the same substring more than once

• In a lattice path, every word is dependent on all other words.
 – can’t model local dependencies
Option 2: Forests (Langkilde-Geary ‘00,’02)

S

OR

S.328

PRP.3

you

VP.248

VP.327

OR

NP.318

to be eaten by

the chicken

S.358

PRP.3

VP.357

NP.318

...
Properties of forests

• Efficient representation:
 – each individual constituent represented only once, with pointers
 – ranker will only compute a partial score for a subtree once
 – several alternatives represented by disjunctive (“OR”) nodes

• Equivalent to a non-recursive context-free grammar
 – S.469 \rightarrow S.328
 – S.469 \rightarrow S.358
 – ...

Statistical ranking

- Uses n-gram language models to choose the best realisation r:

$$r_{\text{best}} = \arg \max_{r \in \text{forest}} \prod_{i=1}^{n} P(w_i | w_1...w_{i-1})$$

$$= \arg \max_{r \in \text{forest}} \prod_{i=1}^{n} P(w_i | w_{i-1}) [\text{Markov assumption}]$$
Performance of HALogon

Minimally specified input frame (bigram model):
• It would sell its fleet age of Boeing Co. 707s because of maintenance costs increase the company announced earlier.

Minimally specified input frame (trigram model):
• The company earlier announced it would sell its fleet age of Boeing Co. 707s because of the increase maintenance costs.

Almost fully specified input frame:
• Earlier the company announced it would sell its aging fleet of Boeing Co. 707s because of increased maintenance costs.
Observations

• The usual issues with n-gram models apply:
 – bigger $n \rightarrow$ better output, but more data sparseness

• Domain dependent
 – relatively easy to train, assuming corpus in the right format
Beyond n-grams?

• N-gram models rank purely based on word sequences.

• Recent work has begun to consider factoring in other features during re-ranking.
 – This takes us beyond simple language models.
 – Consider factored language models, for example.
Example: Distance-based features

• Recall:
 – Separately, the Federal Energy Regulatory Commission turned down for now a request by Northeast seeking approval of its possible purchase of PS of New Hampshire. (WSJ0013.16).
 – Separately, the Federal Energy Regulatory Commission turned down a request by Northeast seeking approval of its possible purchase of PS of New Hampshire for now. (WSJ0013.16).

• Distance-based features can cause a ranker to prefer outputs where the modifier is closer to the host.
Example: Agreement features

• If input is underspecified w.r.t. inflection, we would like to enable our ranker to prefer sentences where subject-verb agreement is correct.
 – E.g. agreement based on animacy and number.
 – Can be compromised by distance (e.g. with a WH-clause between subject NP and Verb).
 – N-gram models can miss this.
 • *The car, which was bought by the manager, was/were damaged.*
 • *The people who/which/that bought cigarettes...*
But wait..

• Why not put these directly in the grammar?
 – Grammar is then guaranteed to only overgenerate with correct alternatives.
 – Ranking can proceed as normal.

• The main problems:
 – Not all rules are easy to specify (cf. modifier ordering);
 – Some rules have a lot of exceptions, sub-regularities etc.
Part 6

REALISATION ENGINES
A realisation engine

• Unlike a realiser, a realisation engine is simply a software library which:
 – Performs linearisation
 – Performs morphological inflection
 – i.e. generates correct syntactic structures

BUT:

 – Leaves the choices up to the user/engineer.
SimpleNLG

• SimpleNLG (Gatt & Reiter 2009):
 – Developed at Aberdeen
 – Java API to generate English sentences
 – Versions now exist for French (Vaudry & Lapalme 2013), German (Bollman 2011), Brazilian Portuguese (de Oliveira & Sripada 2014).

• Features:
 – No input specification.
 – No choice-making behaviour, except for basic linearisation and inflection decisions.
 – Allows mixture of canned text and syntax.
 – Theory-neutral (except for definition of phrase and word types).
 – Reasonable coverage (but not formally evaluated).
SimpleNLG Example

- Target sentence: *Once upon a time there was a cat.*

```java
SPhraseSpec s = this.phraseFactory.createClause();
s.setSubject("there");
VPPhraseSpec vp = this.phraseFactory.createVerbPhrase("be");
NPPhraseSpec np = this.phraseFactory.createNounPhrase("a", "cat");
vp.setComplement(np);
s.setVerbPhrase(vp);
s.setFeature(Feature.TENSE, Tense.PAST);
StringElement string = new StringElement("Once upon a time");
s.setFrontModifier(string);
```
Why bother?

• Often, developers of NLG systems are interested in other parts of the NLG process.
 – I.e. don’t want to bother with a sophisticated realisation component.

• Full control
 – The fact that it’s theory-neutral helps.

• Simplicity
 – Used by quite a large community, accessible to non-linguists.
 – Used also by individuals interested in using an NL front-end, but not really doing “full-fledged” NLG.
Part 6

EVALUATING REALISERS
The typical evaluation setup

Corpus with annotations → Extract inputs from corpus → Regenerate the sentences.
Comparison using some evaluation metric.
Evaluation metrics

• Coverage:
 – How much of the corpus does the realiser manage to re-generate?
 • What proportion does it regenerate exactly?
 • What proportion does it have no output for?

• String overlap:
 – Simple String Accuracy
 – BLEU
 – Both of these give average scores over the test set.
Looking under the hood

• Simple string-based averages don’t tell us what it is exactly that is going wrong.

• Callaway (2005):
 – Exhaustive analysis of errors made by FUF/SURGE against the Penn Treebank.
 – Very high coverage, highest BLEU score recorded to date.
 – Errors arise from a variety of sources:
 • Errors in the corpus annotation.
 • Errors during transformation (extraction of inputs from corpus)
 • Errors of syntax (problems with rules)
 • ...
Current Frontiers in Realisation

• Improving realisers by taking into account more linguistic features.
 – Re-ranking, or grammar engineering?

• Multilinguality:
 – Most realisation work done on English. Other languages have very different (sometimes more complex challenges).
 – Problem: corpora from which to induce grammars, train re-rankers.
Some final observations

• Traditionally, realisation is viewed as the final stage of NLG.

• However, lexicalisation, aggregation etc are often thought of as sub-tasks of realisation.

• As statistical models get more sophisticated, we see realisation also working with:
 – Lexical features
 – Pragmatic features
 – Information structure
References

References