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Structure 

● Evaluation Concepts 
● Specifics: controlled ratings-based eval 
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Purpose of Evaluation 

● What do we want to know? 
● Audience? 
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Example: BabyTalk 

●  Goal: Summarise clinical data about 
premature babies in neonatal ICU 

●  Input: sensor data; records of actions/
observations by medical staff 

●  Output: multi-para texts, summarise 
»  BT45: 45 mins data, for doctors 
»  BT-Nurse: 12 hrs data, for nurses 
»  BT-Family: 24 hrs data, for parents 
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Babytalk: Neonatal ICU 
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Babytalk Input: Sensor Data 
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BT-Nurse text (extract) 

Respiratory Support 
Current Status 
Currently, the baby is on CMV in 27 % O2. Vent RR is 55 breaths 
per minute. Pressures are 20/4 cms H2O. Tidal volume is 1.5. 
 
SaO2 is variable within the acceptable range and there have been 
some desaturations. 
… 
Events During the Shift 
A blood gas was taken at around 19:45. Parameters were 
acceptable. pH was 7.18. CO2 was 7.71 kPa. BE was -4.8 mmol/L. 
… 
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Babytalk eval: goals 

●  Babytalk evaluation goals 
»  Medics want to know if Babytalk summaries 

enhance patient outcome 
– Deploy Babytalk on ward and measure outcome (RCT) 

»  Psychologists want to know if Babytalk texts are 
effective decision support tool 

– Controlled “off ward” study of decision effectiveness 
»  Developers want to know how improve system 

– Qualitative feedback often most useful 

»  Software house wants to know if profitable 
–  Business model (costs and revenue) 
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Which Goal? 

● Depends! 
» Publish NLG research papers – usually 

focus on “psychologist” goals 
» Publish NLP research paper – usually 

performance on standard data set 
– Very dubious in my opinion…. 

● But other goals also important 
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Types of NLG Evaluation 

● Task Performance 
● Human Ratings 
● Metric (comparison to gold standard) 

● Controlled vs Real-World 
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Task-Performance Eval 

● Measure whether NLG system achieves 
its communicative goal 
» Typically helping user perform a task 
» Other possibilities, eg behaviour change 

● Evaluate in real-world or in controlled 
experiment 
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Real world: STOP smoking 

●  STOP system generates personalised 
smoking-cessation letters 

●  Recruited 2553 smokers 
»  Sent 1/3 STOP letters 
»  Sent 1/3 fixed (non-tailored) letter 
»  Sent 1/3 simple “thank you” letter 

●  Waited 6 months, and compared smoking 
cessation rates between the groups 
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Results: STOP 

● 6-Month cessation rate 
» STOP letter: 3.5% 
» Non-tailored letter: 4.4% 
» Thank-you letter: 2.6% 

● Note: 
» More heavy smokers in STOP group 
» Heavy smokers less likely to quit 
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Negative result 

● Should be published! 
● Don’t ignore or “tweak stats” until you 

get the “right” answer 

●  E Reiter, R Robertson, and L Osman (2003). Lessons 
from a Failure: Generating Tailored Smoking 
Cessation Letters. Artificial Intelligence 144:41-58. 
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Controlled exper: BT45 

●  Babytalk BT-45 system (short reports) 
●  Choose 24 data sets (scenarios) 

»  From historical data (5 years old) 

●  Created 3 presentations of each scenario 
»  BT45 text, Human text, Visualisation 

●  Asked 35 subjects (medics) to look at 
presentations and decide on intervention 
»  In experiment room, not in ward 
»  Compared intervention to gold standard 

●  Computed likelihood of correct decision 
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Results: BT45 

● Correct decision made 
» BT45 text: 34% 
» Human text: 39% 
» Visualisation: 33% 

● Note: 
» BT45 texts mostly as good as human, but 

were pretty bad in scen where target action  
was “no action” or “sensor error” 
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Reference 

●  F Portet, E Reiter, A Gatt, J Hunter, S Sripada, Y 
Freer, C Sykes (2009). Automatic Generation of 
Textual Summaries from Neonatal Intensive Care 
Data. Artificial Intelligence 173:789-816 

●  M. van der Meulen, R. Logie, Y. Freer, C. Sykes, N. 
McIntosh, and J. Hunter, "When a graph is poorer 
than 100 words: A comparison of computerised 
natural language generation, human generated 
descriptions and graphical displays in neonatal 
intensive care," Applied Cognitive Psychology, vol. 
24, pp. 77-89, 2008. 
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Task-based evaluations 

● Most respected 
» Especially outwith NLG/NLP community 

● Very expensive and time-consuming 
● Eval is of specific system, not generic 

algorithm or idea 
» Small changes to both STOP and BT45 

would probably changes eval result 
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Human Ratings 

● Ask human subjects to assess texts 
» Readability (linguistic quality) 
» Accuracy (content quality) 
» Usefulness 

● Can assess control/baseline as well 
● Usually use Likert scale 

» Strongly agree, agree, undecided, 
disagree, strongly disagree (5 pt scale) 
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Real world: BT-Nurse 

●  Deployed BT-Nurse on ward 
●  Nurses used it on real patients 

»  Both beginning and end of shift 
»  Vetted to remove content that could damage care 

– No content removed 

●  Nurses gave scores (3-pt scale) on each text 
»  Understandable, accurate, helpful 
»  Agree, neutral, disagree 

●  Also free-text comments 
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Results: BT-Nurse 
● Numerical results 

» 90% of texts understandable 
» 70% of texts accurate 
» 60% of texts helpful 
»  [no texts damaged care] 

● Many comments 
» More content 
» Software bugs 
» A few “really helped me” comments 
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Reference 

●  J Hunter, Y Freer, A Gatt, E Reiter, S Sripada, C 
Sykes, D Westwater (2011). BT-Nurse: Computer 
Generation of Natural Language Shift Summaries 
from Complex Heterogeneous Medical Data. Journal 
of the American Medical Informatics Association 
18:621-624 

●  J Hunter, Y Freer, A Gatt, E Reiter, S Sripada, C 
Sykes (2012). Automatic generation of natural 
language nursing shift summaries in neonatal 
intensive care: BT-Nurse. Artificial Intelligence in 
Medicine 56:157–172 
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Controlled exper: Sumtime 

●  Marine weather forecasts 
●  Choose 5 weather data sets (scenarios) 
●  Created 3 presentations of each scenario 

»  Sumtime text 
»  human texts 
»  Hybrid: Human content, SumTime language 

●  Asked 73 subjects (readers of marine 
forecasts) to give preference 
»  Each saw 2 of the 3 possible variants of a scenario 
»  Most readable, most accurate, most appropriate 
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Results: SumTime 

Question                  ST      Human      same     p value 
SumTime vs. human texts 
More appropriate?  43%        27%      30%      0.021 
More accurate?       51%        33%      15%     0.011 
Easier to read?       41%        36%       23%    >0.1 
 
Hybrid vs. human texts 
More appropriate?  38%        28%       34%    >0.1 
More accurate?       45%        36%       19%    >0.1 
Easier to read?        51%       17%        33%   <0.0001 



Ehud Reiter, Computing Science, University of Aberdeen 25 

Reference 

●  E Reiter, S Sripada, J Hunter, J Yu, and I Davy 
(2005). Choosing Words in Computer-Generated 
Weather Forecasts. Artificial Intelligence 
167:137-169. 
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Human ratings evaluation 

● Probably most common type in NLG 
» Well accepted in academic literature 

● Easier/quicker than task-based 
» For controlled eval, can be able to use 

Mechanical Turk 
» Can answer questions which are hard to fit 

into a task-based evaluation 
– Can ask people to generalise 
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Metric-based evaluation 

● Create a gold standard set 
»  Input data for NLG system (scenarios) 
» Desired output text (usually human-written) 

– Sometimes multiple “reference” texts specified 

● Run NLG system on above data sets 
● Compare output to gold standard output 

» Various metrics, such as BLEU 
● Widely used in machine translation 
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Example: SumTime input data 

day/hour     wind-dir speed gust 
●  05/06  SSW  18  22   
●  05/09  S  16  20   
●  05/12  S  14  17   
●  05/15  S  14  17   
●  05/18  SSE  12  15   
●  05/21  SSE  10  12   
●  06/00  VAR  6  7   
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Example: Gold standard 

●  Reference 1  - SSW’LY 16-20 GRADUALLY 
BACKING SSE’LY THEN DECREASING VARIABLE 
4-8 BY LATE EVENING 

●  Reference 2  - SSW 16-20 GRADUALLY BACKING 
SSE BY 1800 THEN FALLING VARIABLE 4-8 BY 
LATE EVENING 

●  Reference 3  - SSW 16-20 GRADUALLY BACKING 
SSE THEN FALLING VARIABLE 04-08 BY LATE 
EVENING 

Above written by three professional forecasters 
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Metric evaluation example 

●  SumTime output: 
»  SSW 16-20 GRADUALLY BACKING SSE THEN 

BECOMING VARIABLE 10 OR LESS BY MIDNIGHT 

●  Compare to Reference 1 
»  SSW’LY 16-20 GRADUALLY BACKING SSE’LY THEN 

DECREASING BECOMING VARIABLE 4-8 10 OR LESS BY 
LATE EVENING MIDNIGHT 

●  Compute score using metric 
»  edit distance, BLEU, etc 
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Issues 

●  Is SSW’LY better than SSW? 
» 2 out of 3 reference texts use SSW 
» Good to have multiple reference texts 

●  Is BY LATE EVENING better than BY 
MIDNIGHT? 
» User studies with forecast readers suggest 

BY MIDNIGHT is less ambiguous 
» Should ST be eval against human texts? 

– SumTime texts are better than human texts! 
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Which Metric is Best? 
● Assess by validation study 

» Do “gold standard” eval of multiple systems 
– Task-performance or human ratings 
– Ideally evaluate 10 or more NLG systems 

●  Which must have same inputs and target outputs 

» Also evaluate systems using metrics 
» Which metric correlates best with “gold 

standard” human evaluations? 
– Do any metrics correlate? 
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Validation: result 

●  NIST-5 (BLEU variant) is best predictor of 
human clarity (readability) judgements 

●  No metric correlates with human accuracy 
judgements 

●  E Reiter, A Belz (2009). An Investigation into the 
Validity of Some Metrics for Automatically Evaluating 
Natural Language Generation Systems 
Computational Linguistics 35:529–558 
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Metric-based evaluation 

●  I seriously dislike 
» we don’t have strong evidence that metrics 

predict human ratings, let alone task perf 
» Also people can “game” the metrics 

●  (my opinion) have distorted machine 
translation, summarisation 
» Communities forced to use poorly validated 

metrics for political/funding reasons 
» Not the way to do good science 
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General issues 

●  Validity 
»  Are eval technique correlated with goal? 

– Do human ratings correlate with task performance? 
–  BT: subjects did best with human text summaries, but 

preferred the visualisations 

» Psych: why do US universities use SAT? 
● Generalisability 

»  Do results generalise (domains, genres, etc)? 
–  ST: Can we generate good aviation forecasts? 

»  Psych: intelligence tests don’t work on minorities 
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Statistics 

● Be rigorous! 
» Non-parametric tests where appropriate 
» Multiple hypothesis corrections 
» Two-tailed p-values 
» Avoid post-hoc analyses 

● Medicine: strict stats needed 
» Are “significant” results replicated? 
» Only if stats are very rigorous 
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Specifics 

● How perform a controlled ratings-based 
evaluation? 

● Example: weather forecasts 
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Experimental Design 

● Hypotheses 
● Subjects 
● Material 
● Procedure 
● Analysis 
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Hypotheses: before experiment 

● Define hypotheses, stats, etc in detail 
before the experiment is done 
»  In medicine, expected to publish full 

experimental design beforehand 
– https://clinicaltrials.gov/ 

»  If multiple hypothesis, reduce p value for 
significance (discuss later) 

● Why? 
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Post-hoc 

● Colleague once told me “I didn’t see a 
significant effect initially, so I just loaded 
the data into SPSS and tried all kinds of 
stuff until I saw something with p < .05” 

● What is wrong with this? 
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Why is this bad? 

●  Assume we test 10 variants of a hypothesis 
»  “Sumtime more accurate than human” 
»  “Hybrid more readable than human” 
»  etc 

●  Assume we use 10 different stat tests 
»  Eg, normalise data in different ways 

●  100 tests 
»  so we’ll see a (variant, stat) combination which is 

sig at p = .01, even if no genuine effect 
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Hypotheses: SumTime 

●  Hyp 1: Sumtime texts more appropriate than 
human texts 

●  Hyp 2: Hybrid texts more readable than 
human texts 

●  2 hypotheses, so significant of p < .025 
●  Any other hypothesis post-hoc 

»  Including “ST texts more accurate” 
»  Not significant even though p = 0.011 
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Subjects: Who are they 
●  What subjects are needed 

»  Language skills? Domain knowledge? 
Background? Age? Etc 

●  Sometimes not very restrictive 
»  General hypotheses about language 
»  Mechanical Turk is good option 

●  Sometimes want specific people 
»  Eg, test reaction of users to a system 

–  Babytalk-Family evaluated by parents who have babies 
in neonatal ICU 
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How many subjects? 

● Can do a power calculation to 
determine subject numbers 
»  https://en.wikipedia.org/wiki/Statistical_power 
»  Depends on expected effect size 

– More subjects needed for smaller effects 

» Typically looking for 50+ 
– Not a problem with Mturk 
– Can be real hassle if need subjects with 

specialised skills or backgrounds 
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Recruitment of subjects 

● General subjects (easier) 
» Mechanical Turk 
» Local students 

● Specialised subjects (harder) 
» email lists, networks, conferences, … 
» Personal contacts 
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Subjects: SumTime 

● Type: regular readers and users of 
marine weather forecasts 

● Recruitment: asked domain experts 
(working on project) to recruit via their 
networks and contacts 

● Number: wanted 50, got 72 
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Material: scenarios 

● Usually start by choosing some 
scenarios (data sets) 
» Usually try to be representative and/or 

cover important cases 
» Random choice also possible 
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Material: presentations 

● Typically prepare different presentations 
of each scenario 
» Output of NLG system(s) being evaluated 
» Control/baseline 

– Human-authored text? 
– Output of current best-performing NLG system? 
– Fixed (non-generated) text? 

» Depends on hypotheses 
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Material: structure 

● For each scenario, subjects can see 
» One presentation 
» Some presentations 
» All presentations 

● Subjects should not know if a 
presentation is NLG or control! 
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Material: Sumtime 

●  Number of scenarios: 5 
»  Corpus texts written by 5 forecasters 
»  First text written by forecaster after magic date 
»  Wanted human/control texts from each of 5 

●  Number of presentations: 3 
»  SumTime (main) 
»  Human (control) 
»  Hybrid (of content-det vs microplan/real) 

●  Structure:  
»  Present pairs (2 out of 3) to each subject 
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Procedure: What subject do 

● What questions asked 
» Readable, accurate, useful 
» Response: N-pt Likert scale, slider 

– https://en.wikipedia.org/wiki/Likert_scale 

● Order 
» Latin Square (Balanced) 
» Random 

● Payment? 
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Latin Square 
Scenario 1 Scenario 2 Scenario 3 

Subject 1 SumTime Human Hybrid 
Subject 2 Hybrid SumTime Human 
Subject 3 Human Hybrid SumTime 
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Procedure: Questions 

● Practice questions at beginning? 
● Fillers between questions we care 

about? 
● Especially important if we want timings 
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Procedure: Ethics 

● Can doing experiment harm people? 
» BT-Nurse and patient care 
»  If so, must present acceptable solution 

● Subjects can drop out at any time 
» Can NOT “pressure” them to stay if the 

want to quit experiment 
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Procedure: Exclusion 

● When do we drop a subject from the 
experiment? 
»  Incomplete responses? 
»  Inconsistent responses? 
» Bizarre responses? 
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Procedure: SumTime 

● Questions 
» Presented 2 variants 
» Which variant is:  easiest to read; most 

accurate; most appropriate 
● Order not randomised 
● No payment 
● No practice or filler, no ethical issues 
● Excluded if less than 50% completed 
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Statistics: Test 

● Principle: Likert scales are not numbers 
» Should not be averaged 
» Non-parametric test (Wilcoxon Signed Rank) 

● Practice 
» Often present average Likert score 
» Use parametric test, such as t-test 
» More or less works…. 

– But not if rigorous stats needed! 
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Statistics: Normalisation 

●  Some users are more generous than others 
●  Some scenarios are harder than others 
●  Potential bias 

»  User X always “agree”, Y always “disagree” 
»  X rates 10 SumTime texts and 1 corpus text 
»  Y rates 1 SumTime text and 10 corpus texts 

●  Use balanced design (Latin square) 
●  Use linear model 

»  Predicts score on user, scenario, presentation 
»  Just look at presentation element 
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Statistics: Multiple Hypoth 

● Bonferroni multiple hypothesis correction 
● Divide significance p value by number of 

hypotheses being tested 
» 1 hypothesis: look for  p < .05 
» 2 hypotheses: look for p < 0.025 
» 10 hypotheses: look for p > 0.005 
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Statistics: SumTime 

● Test: Chi-square 
» Because users asked to state a preference 

between variants, did not give Likert score 
● Normalisation:  not necessary 

» Less important with preferences 
– If user is asked whether A or B is better, doesnt 

matter how generous he is (“great” vs “poor”) 

● Multiple hypotheses:  p < 0.025 
» Because 2 hypotheses 
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Questions 


